Search results for "Fractional coloring"
showing 6 items of 6 documents
Paths Coloring Algorithms in Mesh Networks
2003
In this paper, we will consider the problem of coloring directed paths on a mesh network. A natural application of this graph problem is WDM-routing in all-optical networks. Our main result is a simple 4-approximation algorithm for coloring line-column paths on a mesh. We also present sharper results when there is a restriction on the path lengths. Moreover, we show that these results can be extended to toroidal meshes and to line-column or column-line paths.
Neighbor-Distinguishing k-tuple Edge-Colorings of Graphs
2009
AbstractThis paper studies proper k-tuple edge-colorings of graphs that distinguish neighboring vertices by their sets of colors. Minimum numbers of colors for such colorings are determined for cycles, complete graphs and complete bipartite graphs. A variation in which the color sets assigned to edges have to form cyclic intervals is also studied and similar results are given.
An exact method for graph coloring
2006
International audience; We are interested in the graph coloring problem. We propose an exact method based on a linear-decomposition of the graph. The complexity of this method is exponential according to the linearwidth of the entry graph, but linear according to its number of vertices. We present some experiments performed on literature instances, among which COLOR02 library instances. Our method is useful to solve more quickly than other exact algorithms instances with small linearwidth, such as mug graphs. Moreover, our algorithms are the first to our knowledge to solve the COLOR02 instance 4-Inser_3 with an exact method.
Chromatic Sums for Colorings Avoiding Monochromatic Subgraphs
2013
Abstract Given graphs G and H, a vertex coloring c : V ( G ) → N is an H-free coloring of G if no color class contains a subgraph isomorphic to H. The H-free chromatic number of G, χ ( H , G ) , is the minimum number of colors in an H-free coloring of G. The H-free chromatic sum of G , Σ ( H , G ) , is the minimum value achieved by summing the vertex colors of each H-free coloring of G. We provide a general bound for Σ ( H , G ) , discuss the computational complexity of finding this parameter for different choices of H, and prove an exact formulas for some graphs G. For every integer k and for every graph H, we construct families of graphs, G k with the property that k more colors than χ ( …
Stochastic Learning for SAT- Encoded Graph Coloring Problems
2010
The graph coloring problem (GCP) is a widely studied combinatorial optimization problem due to its numerous applications in many areas, including time tabling, frequency assignment, and register allocation. The need for more efficient algorithms has led to the development of several GC solvers. In this paper, the authors introduce a team of Finite Learning Automata, combined with the random walk algorithm, using Boolean satisfiability encoding for the GCP. The authors present an experimental analysis of the new algorithm’s performance compared to the random walk technique, using a benchmark set containing SAT-encoding graph coloring test sets.
The b-chromatic number of power graphs
2003
The b-chromatic number of a graph G is defined as the maximum number k of colors that can be used to color the vertices of G, such that we obtain a proper coloring and each color i, with 1 ≤ i≤ k, has at least one representant x_i adjacent to a vertex of every color j, 1 ≤ j ≠ i ≤ k. In this paper, we discuss the b-chromatic number of some power graphs. We give the exact value of the b-chromatic number of power paths and power complete binary trees, and we bound the b-chromatic number of power cycles.