Search results for "Fractional coloring"

showing 6 items of 6 documents

Paths Coloring Algorithms in Mesh Networks

2003

In this paper, we will consider the problem of coloring directed paths on a mesh network. A natural application of this graph problem is WDM-routing in all-optical networks. Our main result is a simple 4-approximation algorithm for coloring line-column paths on a mesh. We also present sharper results when there is a restriction on the path lengths. Moreover, we show that these results can be extended to toroidal meshes and to line-column or column-line paths.

AlgorithmicsMesh networkingPath (graph theory)Approximation algorithmPolygon meshFractional coloringTelecommunications networkAlgorithmTime complexityMathematics
researchProduct

Neighbor-Distinguishing k-tuple Edge-Colorings of Graphs

2009

AbstractThis paper studies proper k-tuple edge-colorings of graphs that distinguish neighboring vertices by their sets of colors. Minimum numbers of colors for such colorings are determined for cycles, complete graphs and complete bipartite graphs. A variation in which the color sets assigned to edges have to form cyclic intervals is also studied and similar results are given.

Circular coloringComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION0102 computer and information sciences[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]01 natural sciencesGraphTheoretical Computer ScienceCombinatoricsGreedy coloringIndifference graphChordal graphDiscrete Mathematics and Combinatorics0101 mathematicsFractional coloringComputingMilieux_MISCELLANEOUSComputingMethodologies_COMPUTERGRAPHICSMathematicsDiscrete mathematicsk-tuple edge-coloringClique-sum010102 general mathematics[ INFO.INFO-DM ] Computer Science [cs]/Discrete Mathematics [cs.DM]1-planar graphMetric dimension010201 computation theory & mathematicsIndependent setMaximal independent setNeighbor-distinguishingMathematicsofComputing_DISCRETEMATHEMATICSAdjacent vertex-distinguishing
researchProduct

An exact method for graph coloring

2006

International audience; We are interested in the graph coloring problem. We propose an exact method based on a linear-decomposition of the graph. The complexity of this method is exponential according to the linearwidth of the entry graph, but linear according to its number of vertices. We present some experiments performed on literature instances, among which COLOR02 library instances. Our method is useful to solve more quickly than other exact algorithms instances with small linearwidth, such as mug graphs. Moreover, our algorithms are the first to our knowledge to solve the COLOR02 instance 4-Inser_3 with an exact method.

Discrete mathematics021103 operations research[INFO.INFO-RO] Computer Science [cs]/Operations Research [cs.RO]General Computer Science0211 other engineering and technologies[INFO.INFO-RO]Computer Science [cs]/Operations Research [cs.RO]0102 computer and information sciences02 engineering and technologyManagement Science and Operations Research01 natural scienceslaw.inventionCombinatoricsEdge coloring010201 computation theory & mathematicslawGraph powerModeling and SimulationLine graphGraph homomorphismGraph coloringFractional coloringGraph factorizationMathematicsList coloring[ INFO.INFO-RO ] Computer Science [cs]/Operations Research [cs.RO]
researchProduct

Chromatic Sums for Colorings Avoiding Monochromatic Subgraphs

2013

Abstract Given graphs G and H, a vertex coloring c : V ( G ) → N is an H-free coloring of G if no color class contains a subgraph isomorphic to H. The H-free chromatic number of G, χ ( H , G ) , is the minimum number of colors in an H-free coloring of G. The H-free chromatic sum of G , Σ ( H , G ) , is the minimum value achieved by summing the vertex colors of each H-free coloring of G. We provide a general bound for Σ ( H , G ) , discuss the computational complexity of finding this parameter for different choices of H, and prove an exact formulas for some graphs G. For every integer k and for every graph H, we construct families of graphs, G k with the property that k more colors than χ ( …

Discrete mathematicsCombinatoricsGreedy coloringVertex (graph theory)Edge coloringApplied MathematicsDiscrete Mathematics and CombinatoricsMonochromatic colorChromatic scaleComplete coloringFractional coloringBrooks' theoremMathematicsElectronic Notes in Discrete Mathematics
researchProduct

Stochastic Learning for SAT- Encoded Graph Coloring Problems

2010

The graph coloring problem (GCP) is a widely studied combinatorial optimization problem due to its numerous applications in many areas, including time tabling, frequency assignment, and register allocation. The need for more efficient algorithms has led to the development of several GC solvers. In this paper, the authors introduce a team of Finite Learning Automata, combined with the random walk algorithm, using Boolean satisfiability encoding for the GCP. The authors present an experimental analysis of the new algorithm’s performance compared to the random walk technique, using a benchmark set containing SAT-encoding graph coloring test sets.

Statistics and ProbabilityDiscrete mathematicsControl and OptimizationTheoretical computer scienceComparability graphComputer Science ApplicationsGreedy coloringComputational MathematicsEdge coloringComputational Theory and MathematicsModeling and SimulationGraph (abstract data type)Decision Sciences (miscellaneous)Graph coloringFractional coloringGraph factorizationList coloringMathematicsInternational Journal of Applied Metaheuristic Computing
researchProduct

The b-chromatic number of power graphs

2003

The b-chromatic number of a graph G is defined as the maximum number k of colors that can be used to color the vertices of G, such that we obtain a proper coloring and each color i, with 1 ≤ i≤ k, has at least one representant x_i adjacent to a vertex of every color j, 1 ≤ j ≠ i ≤ k. In this paper, we discuss the b-chromatic number of some power graphs. We give the exact value of the b-chromatic number of power paths and power complete binary trees, and we bound the b-chromatic number of power cycles.

b-chromatic numberGeneral Computer Science[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]power graphTheoretical Computer ScienceCombinatoricsComputer Science::Discrete MathematicsDiscrete Mathematics and CombinatoricsChromatic scaleGraph coloringcoloringMathematicscycle and complete binary treeMathematics::CombinatoricsBinary treelcsh:Mathematicscycle and complete binary tree.path[ INFO.INFO-DM ] Computer Science [cs]/Discrete Mathematics [cs.DM]Complete coloringlcsh:QA1-939Vertex (geometry)Brooks' theorem[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]Edge coloringFractional coloringDiscrete Mathematics & Theoretical Computer Science
researchProduct